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The solution of the exponential integral at linear heating for the general case that 
the activation energy linearly depends on temperature according to E(T) = E o q- RBT is 

T 
RTS+2 ] 

A f T S e x p ( _ _ E O ] d T :  ~_( qS(~_2)RTjexp (_ R~ ) 
q .}  ~ RT) E o 

0 

In an earlier paper [1] we presented the solution of the exponential integral 
for the particular case when the activation energy is independent of temperature: 
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It is interesting to note that this solution of the temperature integral had already 
implicitly been reported in the literature [2] in the form of the function P(x): 

A E  
r(~) - ~  e(x) (2) 

where, as the best approach of the function, the following expression had been 
proposed : 

P(x) = (x + 2) - lx -Ze  -x  (3) 

where x = E/RT. In fact, if Eq. (3) is substituted into Eq. (2) and some simple 
transformations are performed, we arrive to the known solution Eq. (1): 

F(cr = qR(E/RT + 2)E/RT = q E + 2RT) exp - . (4) 

It is surprising why Doyle [2] did not carry out these simple operations to obtain 
the final analytical relationship. He also pointed out the high accuracy of the ap- 
proach P(x) = (x + 2 ) - l x -ae  -~, as demonstrated by the table in [2]. 
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In the followings, we propose an algorism of the solution of the exponential 
integral for the more general case when activation energy depends, as a first 
approach, linearly on temperature: 

E(T) = Eo + RBT. (5) 

Substitution of  this equation into the differential form of  the Arrhenius equation 
yields 

d l n K  E(T) E o + RBT 
d ~ -  RT 2 = RT ~ (6) 

or, after integration 

K = A T  Bexp - ~  . (7) 

It is known that in the theory of active collisions B = i/2, in the theory of  activated 
complexes B = 1. Under real conditions the value of  the temperature exponent 
presumably can assume other values too. 

Let us consider the solution of the temperature integral for the case of B = 1 
(theory o f  activated states): 

T 

F(e) = q Texp - dT.  (8) 

0 

Let us assume that the following expression is the solution of Eq. (8): 

A RTSEo ( E~ ~-T F(e) = q Z  exp (9) 

with the condition that the value Z is dependent only to a very slight extent on 
temperature, which in turn leads to the condition dZ/dT ~ O. Let us now differen- 
tiate Eq. (9): 

(dZ}RT 3 3RT 2 
+ z T o  + z v = r ,  

and, taking into account the above conditions: 

3RT 2 
Z - -  + Z T = T ,  

Eo 
so that finally 

Z - -  E~ 
Eo + 3 R T  ' 

and the solution of the integral equation (8) will assume the form 

F ( e ) = q  Eo + 3RT) exp - ~  . (10) 
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To test the correctness of Eq. (10), let us redifferentiate Eq. (10): 

The expression 

dF(a) A 

dT q 
{1 3R2r2 1 (Eo + 3RT)z I Texp [- ETI " (11) 

3R2T 2 
4 1 .  

(Eo + 3RT) 2 

For any arbitrary value of B this same algorism of integration leads to the 
general expression 

T 

q ~  q E o + (B + 2)RT exp . (12) 
0 

If subsequently the activation energy of the transformation is determined by plot- 
ting the linear relationship 

F(~) E O + l n  [ AR } 
In TB+2 -- RT  q[E o + (B + 2)RT] ' 

then the value E o can be calculated from the slope, since the effect of the temper- 
ature dependence of the term 

In q[Eo + (B + 2)RT] 

on linearity can be neglected. Hence, independently of what model is assumed 
for K(T), experimental data will yield the value of the activation energy E o, and 
not that of E(T). 
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